10,642 research outputs found

    Effects of microstructure architecture on the fracture of fibrous materials

    Get PDF
    Fibrous materials is one of the potential scaffolds used for tissue engineered constructs. One of prerequisite properties for tissue engineered construct is fracture property. The work here study the relationship between microstructure architecture and fracture behavior of fibrous networks by using finite element analysis. The result shows that fibrous networks are toughened by either reducing the fiber density or cross-link percentage of networks. Such implementation increases the degree of non-affine deformation and produces a more compliant response at the crack-tip region. The non-affine deformation in fibrous networks involves fiber movement like fiber rearrangement and reorientation, where such mechanisms allow stress delocalization to occur at the crack-tip region and results in a better fracture toughness of fibrous networks. The findings form this work provide the design guideline of fibrous materials with enhanced toughness for multiple applications

    Self-reported domain-specific and accelerometer-based physical activity and sedentary behaviour in relation to psychological distress among an urban Asian population

    Get PDF
    Background: The interpretation of previous studies on the association of physical activity and sedentary behaviour with psychological health is limited by the use of mostly self-reported physical activity and sedentary behaviour, and a focus on Western populations. We aimed to explore the association of self-reported and devise-based measures of physical activity and sedentary behaviour domains on psychological distress in an urban multi-ethnic Asian population. Methods: From a population-based cross-sectional study of adults aged 18-79 years, data were used from an overall sample (n = 2653) with complete self-reported total physical activity/sedentary behaviour and domain-specific physical activity data, and a subsample (n = 703) with self-reported domain-specific sedentary behaviour and accelerometry data. Physical activity and sedentary behaviour data were collected using the Global Physical Activity Questionnaire (GPAQ), a domain-specific sedentary behaviour questionnaire and accelerometers. The Kessler Screening Scale (K6) and General Health Questionnaire (GHQ-12) were used to assess psychological distress. Logistic regression models were used to calculate odds ratios (ORs) and 95% confidence intervals, adjusted for socio-demographic and lifestyle characteristics. Results: The sample comprised 45.0% men (median age = 45.0 years). The prevalence of psychological distress based on the K6 and GHQ-12 was 8.4% and 21.7%, respectively. In the adjusted model, higher levels of self-reported moderate-to-vigorous physical activity (MVPA) were associated with significantly higher odds for K6 (OR = 1.47 [1.03-2.10]; p-trend = 0.03) but not GHQ-12 (OR = 0.97 [0.77-1.23]; p-trend = 0.79), when comparing the highest with the lowest tertile. Accelerometry-assessed MVPA was not significantly associated with K6 (p-trend = 0.50) nor GHQ-12 (p-trend = 0.74). The highest tertile of leisure-time physical activity, but not work- or transport-domain activity, was associated with less psychological distress using K6 (OR = 0.65 [0.43-0.97]; p-trend = 0.02) and GHQ-12 (OR = 0.72 [0.55-0.93]; p-trend = 0.01). Self-reported sedentary behaviour was not associated with K6 (p-trend = 0.90) and GHQ-12 (p-trend = 0.33). The highest tertile of accelerometry-assessed sedentary behaviour was associated with significantly higher odds for K6 (OR = 1.93 [1.00-3.75]; p-trend = 0.04), but not GHQ-12 (OR = 1.34 [0.86-2.08]; p-trend = 0.18). Conclusions: Higher levels of leisure-time physical activity and lower levels of accelerometer-based sedentary behaviour were associated with lower psychological distress. This study underscores the importance of assessing accelerometer-based and domain-specific activity in relation to mental health, instead of solely focusing on total volume of activity

    Toughening in electrospun fibrous scaffolds

    Get PDF
    Electrospun scaffolds mimic the microstructure of structural collagenous tissues and have been widely used in tissue engineering applications. Both brittle cracking and ductile failure have been observed in scaffolds with similarly random fibrous morphology. Finite element analysis can be used to qualitatively examine the mechanics of these differing failure mechanisms. The finite element modeling demonstrates that the noncontinuum deformation of the network structure results in fiber bundle formation and material toughening. Such toughening is accommodated by varying fiber properties, including allowing large failure strains and progressive damage of the fibers.The authors acknowledge the support from the Ministry of Higher Education Malaysia, Khaow Tonsomboon, Daniel Strange, and Anne Bahnweg.This is the final published version. It first appeared at http://scitation.aip.org/content/aip/journal/aplmater/3/1/10.1063/1.4901450

    Surface Operators in N=2 Abelian Gauge Theory

    Full text link
    We generalise the analysis in [arXiv:0904.1744] to superspace, and explicitly prove that for any embedding of surface operators in a general, twisted N=2 pure abelian theory on an arbitrary four-manifold, the parameters transform naturally under the SL(2,Z) duality of the theory. However, for nontrivially-embedded surface operators, exact S-duality holds if and only if the "quantum" parameter effectively vanishes, while the overall SL(2,Z) duality holds up to a c-number at most, regardless. Nevertheless, this observation sets the stage for a physical proof of a remarkable mathematical result by Kronheimer and Mrowka--that expresses a "ramified" analog of the Donaldson invariants solely in terms of the ordinary Donaldson invariants--which, will appear, among other things, in forthcoming work. As a prelude to that, the effective interaction on the corresponding u-plane will be computed. In addition, the dependence on second Stiefel-Whitney classes and the appearance of a Spin^c structure in the associated low-energy Seiberg-Witten theory with surface operators, will also be demonstrated. In the process, we will stumble upon an interesting phase factor that is otherwise absent in the "unramified" case.Comment: 46 pages. Minor refinemen

    Electronic Structure of Electron-doped Sm1.86Ce0.14CuO4: Strong `Pseudo-Gap' Effects, Nodeless Gap and Signatures of Short Range Order

    Full text link
    Angle resolved photoemission (ARPES) data from the electron doped cuprate superconductor Sm1.86_{1.86}Ce0.14_{0.14}CuO4_4 shows a much stronger pseudo-gap or "hot-spot" effect than that observed in other optimally doped nn-type cuprates. Importantly, these effects are strong enough to drive the zone-diagonal states below the chemical potential, implying that d-wave superconductivity in this compound would be of a novel "nodeless" gap variety. The gross features of the Fermi surface topology and low energy electronic structure are found to be well described by reconstruction of bands by a 2×2\sqrt{2}\times\sqrt{2} order. Comparison of the ARPES and optical data from the samesame sample shows that the pseudo-gap energy observed in optical data is consistent with the inter-band transition energy of the model, allowing us to have a unified picture of pseudo-gap effects. However, the high energy electronic structure is found to be inconsistent with such a scenario. We show that a number of these model inconsistencies can be resolved by considering a short range ordering or inhomogeneous state.Comment: 5 pages, 4 figure

    Hole density dependence of effective mass, mobility and transport time in strained Ge channel modulation-doped heterostructures

    Get PDF
    We performed systematic low-temperature (T = 350 mK–15 K) magnetotransport measurements on the two-dimensional hole gas with various sheet carrier densities Ps = (0.57–2.1)×1012 cm–2 formed in the strained Ge channel modulation-doped (MOD) SiGe heterostructures grown on Si substrates. It was found that the effective hole mass deduced by temperature dependent Shubnikov–de Hass oscillations increased monotonically from (0.087±0.05)m0 to (0.19±0.01)m0 with the increase of Ps, showing large band nonparabolicity in strained Ge. In contrast to this result, the increase of the mobility with increasing Ps (up to 29 000 cm2/V s) was observed, suggesting that Coulomb scattering played a dominant role in the transport of the Ge channel at low temperatures. In addition, the Dingle ratio of the transport time to the quantum lifetime was found to increase with increasing Ps, which was attributed to the increase of remote impurity scattering with the increase of the doping concentration in MOD SiGe layers

    Parts verification for multi-level-dependent demand manufacturing systems: a recognition and classification structure

    Get PDF
    This research has developed and implemented a part recognition and classification structure to execute parts verification in a multi-level dependent demand manufacturing system. The part recognition algorithm enables the parent and child relationship between parts to be recognised in a finite-capacitated manufacturing system. This algorithm was developed using SIMAN simulation language and implemented in a multi-level dependent demand manufacturing simulation model. The part classification structure enables the modelling of a multi-level dependent demand manufacturing between parts to be carried out effectively. The part classification structure was programmed using Visual Basic Application (VBA) and was integrated to the work-to-list generated from a simulated MRP model. This part classification structure was then implemented in the multi-level dependent demand manufacturing simulation model. Two stages of implementation, namely parameterisation and execution, of the part recognition and classification structure were carried out. A real case study was used and five detail steps of execution were processed. Simulation experiments and MRP were run to verify and validate the part recognition and classification structure. The results led to the conclusion that implementation of the recognition and classification structure has effectively verified the correct parts and sub-assemblies used for the correct product and order. No parts and sub-assemblies shortages were found, and the quantity required was produced. The scheduled release for some orders was delayed due to overload of the required resources. When the loading is normal, all scheduled release timing is adhered to. The recognition and classification structure has a robust design; hence it can be easily adapted to new systems parameter to study a different or more complex case
    • …
    corecore